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In the case of autonomous dynamical systems, it is better to base symmetry 
considerations on trajectories than on full solutions. In this setting topological 
arguments can be used; a special role is played in this context by time-independent 
Lie-point symmetries. As an application of this approach, we obtain results on 
the existence of stationary and/or  periodic solutions. 

I. INTRODUCTION 

This paper originated from the desire to extend the results relating linear 
symmetries of ordinary differential equations to their periodic solutions 
(Cicogna and Gaeta, 1989) to the case of general geometric, i.e., possibly 
nonlinear, or, as they are called, Lie-point (LP) symmetries (Olver, 1986; 
Bluman and Kumei, 1989; Ovsjannikov, 1962; Stephani, 1989; Gaeta, 
1992) ; the reader is assumed to be familiar with these and with the symmetry 
approach to differential equations. 

It turns out that in the case of autonomous dynamical systems, it is 
more profitable to consider only time-independent Lie-point symmetries; the 
advantage is equivalent, and indeed strongly related, to the one given by 
considering the reduced phase space in which the t coordinate is projected 
out, rather than the full one. 

We begin therefore by discussing LP time-independent (LPTI) sym- 
metries of first-order autonomous ODEs and of their solutions; consistent 
with our general approach, we focus on trajectories rather than on full 
solutions, which leads to definitions (slightly) different from the usual ones. 
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We also point out that in this case (first-order ODE) the set of vector 
fields leaving the equation invariant has not only the usual structure of a 
Lie algebra, but also that of a module (over the algebra of constants of 
motion), a fact which is often overlooked, leading to confusion about the 
dimension and set of generators of the set of vector fields (these are different 
if we consider the set as an algebra or as a module). 

We discuss then the relation between Lie-point time-independent sym- 
metries and the topology of solutions, and more precisely of trajectories of 
solutions in the reduced phase space; this also shows the advantages of 
considering LPTI symmetries instead of general LP ones, and trajectories 
instead of full solutions (see Lemmas I and II): in short, LPTI symmetries 
preserve the topology of trajectories. 

We then discuss periodic and stationary solutions, through a reduction 
argument (see Lemma III); in particular, when the manifolds to which we 
reduce are compact, which could be ensured by an assumption on F we 
make, we can extend the results of Cicogna and Gaeta (1989); see Lemma 
III' and its corollaries. 

We stress that our method and results do not require the knowledge of 
the whole symmetry of the differential equation in question (which could be 
difficult to obtain in full completeness), but can instead be fruitfully applied 
even if one knows only one symmetry of the equation. 

2. SYMMETRY OF EQUATIONS 

We will consider a smooth dynamical system on the smooth manifold 
M embedded in R N, i.e., 

:~=F(x) (1) 

with x=-x(t)EM, teR+, F: M ~  TM; the vector field is supposed to be (i) 
smooth, and (ii) such that there is a compact set K c  M invariant under the 
flow of (1). 

Throughout this note, smooth will mean ~goo; all the functions, mani- 
folds, etc., are assumed to be smooth. 

Since (1) is an autonomous equation, we will find it profitable to take 
care of this specificity in the discussion of its symmetry properties. Indeed, 
(1) can be identified with its solution manifold (Olver, 1986; Bluman and 
Kumei, 1989; Gaeta, 1992), 

S = {(t, x, Yc)/Jc=F(x)} oR+ x TM (2) 

and the symmetry algebra ff of (1) is the algebra of vector fields 17 on R+ x M 
such that their first prolongation (Olver, 1986; Bluman and Kumei, 1989; 
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Gaeta, 1992) q(i) satisfies 

710): S ~ TS (3) 

In the case of (1), S is obviously a direct product 

S=R+ XSo; So={(x, 2)/2=F(x)}=TM (4) 

so that it is natural to concentrate on So, which we do. 
Let us consider the algebra ~ '  of diffeomorphisms of M; the Lie-point 

time-independent (LPTI) symmetry algebra if0 of (1) will just be 

f#o = { ~' e Mg/~,(1): So ~ TSo} (5) 

where ~,(i) is the prolongation of 7'. If ~, is given by the vector field 

= r ~x ~- r 7/ (6) 

then the general prolongation formula gives 

~/(I) ~--. ~i(x ) O@ -t- I~i(x, X) 02--5 =0 q~'(X) O.OX, + 2j Ojd?'(x) 02-50 (7) 

Considering the restriction of this to So, i.e., to 2=F(x), we have immedi- 
ately that ~'efr if and only if 

{F, ~b} = 0 (8) 

where we have defined the bracket { . , .  } : ~ '  x ~t' - ,  ~ '  as 

{W, Z } ' =W j OjZ' -Z j Ojts ' (9) 

Notice that 1'o = Fi(x) Oi satisfies (8) and is therefore, as it should be, in f90. 
For completeness, we also notice that if one considers the algebra ~r of 
time-dependent diffeomorphisms of M (then fr is replaced by f~0) and retain 
the forms (6), (9) for ~=~b(x,t) O~e~' and { . , . } : ~ f x ~ t ,  then (8) is 
replaced by 

~b,+ {V, ~b} =0 (8') 

It is also worth remarking explicitly that in the case of first-order ODEs 
the symmetry algebra f9 and the LPTI one fro have the algebraic structure 
of a module over the algebras /, respectively I0, of constants of motion 
(respectively, time-independent constants of motion), as follows immediately 
from the prolongation formula. In our setting, it is immediate to see that 
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for a(x)elo (which just means FeO,a=O), one has {F, a~b} =a{F, ~b}, so 
that 

h 

71 . . . . .  7heaJo; al . . . .  , a , ,e lo~ ~ a;(x)?'iefgo (10) 
i = l  

and similarly for ~o. 

3. SYMMETRY OF SOLUTIONS 

Let us now consider a solution x=f ( t )  of (1), f :  R+ ~ M. This defines 
a graph F i in R+ x M, i.e., 

FT= {(t, x)eR+ x M / x = f ( t ) }  ~R+ x M (11) 

For an autonomous equation, it is again natural to consider instead the 
projection of this to M, i.e., the trajectory | of x =f ( t ) ,  

Of = {xeM/3t~R+ : x = f (  t) } ~ M (12) 

The curves F / c R + x M  and O s c M  are naturally lifted to curves 
F(1)cR+ x TM and Of(t)c TM, 

F) 1)= {(t; x,p)eR+ x T M / x = f ( t ) , p = f ' ( t ) }  cR+ • TM (13) 

Of (j) = {(x, p) e TM/3teR+ : x =f( t ) ,  p =f ' (  t) } c TM (14) 

If  ~c is the projection from R§ x M to M and d r  is that from R+ x TM to 
TM, so that ~r (t, x ) = x  and d r .  (t, x ,p )=(x ,p ) ,  and ~r is the projection 
from TM to M, we have 

I x ~  

r)') , r:  

o) ' )  > o :  

(15) 

Given a function f :  R+ ~ M [in particular, a solution to (1)], we define its 
LPTI symmetry algebra as 

far= {yeJ[ I7 :  Of--+ TO/) (16) 

Notice that 7: O s +  T| if and only if 7(i): |  __, T| so the above is 
equivalent to 

o)"-> rof(')} (17) 
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In terms of diagrams, for )'efgf we have 

1~1) r~ ~ T O ( l )  

7 
o:  , r e :  

(18) 

We stress that our definition (16), (17) differs from the usual one, which 
considers Ff instead of Of. Again, ~qf has the algebraic structure of a module, 
this time over the algebra I f of function constants along the trajectory of f ;  
clearly, if f is a solution to (1), then Io~_I f 

Clearly, a function f :  R+ ~ M is a solution to (1) if and only if 
oJ%So. 

4. LPTI SYMMETRIES AND TOPOLOGY OF SOLUTIONS 

We stress that considering LPTI symmetries instead of general LP ones, 
and correspondingly the invariance of trajectory rather than the graph of a 
solution, allows us to introduce topological considerations in our symmetry 
analysis. Indeed, let us consider three solutions Xo(t), xv(t), and xg(t), respec- 
tively a stationary one, a periodic one, and a generic one. 

The graphs of the three, F0, F v, and Fg, are all topologically equivalent 
to an open line in R+ • M, i.e., F0-~ F v - F g -  R+. If instead we consider their 
trajectories O0, | and | these are not topologically equivalent: Oo-~ {e}, 
| 1, and | 

If now we consider the action of diffeomorphisms on these, it is clear 
that general LP transformations, i.e., diffeomorphisms of (R+ • M), or even 
time-dependent diffeomorphisms of M, can map F0 in F v or Fg; if instead 
we just consider LPTI transformations, i.e., diffeomorphisms of M, then it 
is clear that "two trajectories which are topologically different cannot be 
mapped into each other by a Lie group transformation" (Bluman and 
Kumei, 1989, p. 154). 

Now, by definition, f#0 transforms solutions to (1) into (generally, 
different) solutions to (1); the above discussion shows the advantage of 
considering instead f~0: this can be set in the form of the following: 

Lemma L The LPTI symmetry algebra of an autonomous ODE trans- 
forms stationary solutions into stationary solutions, and periodic solutions 
into periodic solutions. 

If we focus on periodic solutions, it is also easy to see that LPTI trans- 
formations cannot change the period of solutions: consider the suspension 
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7,  of ~, : M--, TM in R+ x M; its action on F s for f periodic of period T 
satisfies 7,( t , f ( t ) )  = 7,( t  + T, f ( t  + T)), so tha t f i s  transformed into a (gen- 
erally different) function of the same period. We have therefore that the 
above lemma can be rewritten as follows: 

Lemma I'. The LPTI symmetry algebra of an autonomous ODE trans- 
forms stationary solutions into stationary solutions, and periodic solutions 
into periodic solutions of the same period. 

It is well known that a dynamical system like (1) can also exhibit 
quasiperiodic solutions; in this case the solutions fill densely a (topological) 
torus T k c M ,  with k>2,  keZ .  The number k is also called the number of 
modes present in the quasiperiodic solution, so that a k-mode quasiperiodic 
solution f :  R+ ~ M is such that f :  R§ ~ ~ c M and fill densely ~ ,  with 
topologically a k-torus, Y--" T k. 

By repeating the above discussion, and using the smoothness of diffeo- 
morphisms as well as invertibility of Lie group transformations, we also get 
the following result: 

Lemma II. The LPTI symmetry algebra of an autonomous ODE trans- 
forms k-mode quasiperiodic solutions into k-mode quasiperiodic solutions. 

We remark that LPTI symmetries have also shown to be useful in 
connection to periodic solutions of autonomous ODE, allowing for a classi- 
fication of periodic solutions based on knot theory (Gaeta, 1991a; [see also 
Crawford and Omohundro (1984), unknown to me while writing Gaeta 
(1991a); I thank Prof. Crawford for pointing out his paper to me]. 

5. EXISTENCE OF STATIONARY AND PERIODIC SOLUTIONS 

We want to consider the relation existing between zero sets of vector 
fields in f~0 and invariant submanifolds of M under the flow (1). This will also 
allow us to state results on the existence of stationary or periodic solutions. 

For any vector field )' = ~b;(x) a~ in ~g (and in particular in fg0), we 
consider its kernel Kr, 

Kr= { x e M / r  _ M  (19) 

For a subalgebra ~ t ' , _  Jr', K(~g,) will be the intersection of Kr over all the 
7 e ~ ' , .  We have then immediately the following result: 

Lemma IlL For any subalgebra ~ ,  _ f~, the submanifold K(C~,) _ ~ is 
invariant under the flow of (1). 
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Indeed, for xeK((~,), q~g(x)=0 for any ye(r  so that (8) reduces to 
the vanishing of the Lie derivative of ~b along the flow of (1), LFda=O, and 
hence the lemma. 

This kind of simple but very useful reduction lemma has often been 
considered in the linear case (i.e., for linear group actions) in the context of 
bifurcation theory; see, e.g., Golubitsky and Stewart (1985), Golubitsky et 
al. (1988), and Gaeta (1990); it was also the basis of the discussion given in 
Cicogna and Gaeta (1989). A nonlinear version like the present one is used 
in Cicogna (1990) and (Gaeta, 1991b). 

We stress once again that to be applied the above lemmas do not require 
the knowledge of the full symmetry algebra (r in particular, the algebra if ,  
considered in Lemma III could have only one generator. 

From Lemma III we have immediately the following result: 

Corollary. If a vector field Ye(r has isolated zeros, these correspond 
to stationary solutions of (1); if K r contains an isolated set diffeomorphic 
to a circle, either this is the trajectory of a periodic solution or it contains 
stationary points for (1). 

More generally, we can have similar results if we accept the following: 

Assumption on F. There is a compact set KF=_M invariant under the 
flow of (1). 

This, essentially, allows us not only to restrict to K(~,),  but to actually 
restrict to K(~.)  c~ Kr, which is a compact set due to the compactness of KF 
and the smoothness of K(~.) ;  this allows us again to make a statement on 
the existence there of stationary or periodic solutions on the basis of topo- 
logical arguments. Indeed, it is obvious that we have the following: 

Lemma IK For any subalgebra ~ , - ~ 0 ,  the submanifold 

K~ - K(f#,) c~ KF~_M 

is either empty or compact and invariant under the flow of (1). 

From this there follow easy corollaries similar to the one considered 
above: 

Corollao: A. If K~ contains isolated points, these correspond to 
stationary solutions of (1); if K~ has one-dimensional components iso- 
morphic to [0, 1], on each of these there is a stationary solution to (1). 

The first part is analogous to one of the statements seen in the previous 
corollary; the second simply follows from invariance of the interval. 

Corollary B. If K~ has two-dimensional components, on each of 
these lie periodic (possibly stationary) solutions to (1). 
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This just follows from the observation that these components are com- 
pact invariant two-dimensional manifolds, and the standard Poincar6- 
Bendixson theorem (Hirsch and Smale, 1978). 

Corollary C. If K~ has components isomorphic to an even- 
dimensional sphere S 2n, then on each of these lie stationary solutions to (1). 

This just follows from invariance of the components under F and 
the well-known theorem on the existence of zeros of vectors field on even- 
dimensional spheres (Milnor, 1965; Guillemin and Pollack, 1974; Arnold, 
1983). Similarly, using theorems on fixed points on disks, one has the 
following result: 

Corollary D. If K~ has components isomorphic to a disk D 2n+1, 

then on each of these lie stationary solutions to (1). 

It should be remarked that the last two corollaries were already obtained 
in the discussion of linear symmetries (Cicogna, 1984; Cicogna and 
Degiovanni, 1984): since the argument presented there is purely topological, 
it immediately applies to the general nonlinear case. 

We also remark that the connection between periodic orbits and Lie- 
theoretic properties of the equation was already considered in Wulfman 
(1974); as already recalled, results similar to the ones given here were 
obtained for linear symmetries (Cicogna and Gaeta, 1989; Golubitsky and 
Stewart, 1985; Golubitsky et al., 1988). 

We also notice that in a bifurcation-theoretic setting (Golubitsky et al., 
1988; Gaeta, 1990; Sattinger, 1979; Chow and Hale, 1982; Ruelle, 1989; 
Crawford, 1991 ; Crawford and Knobloch, 1991), the assumption on F con- 
sidered in this section is completely natural, and it is also completely natural 
to assume that Kp contains a fixed point x0, losing stability in the bifurcation; 
one can therefore repeat our reasoning considering KF\xO instead of KF 
(similarly, one could consider the case of a more complicated, e.g., periodic, 
solution (00, with co0eK~-, losing stability in the bifurcation, and consider 
KAog0). We will not consider the bifurcation setting here; for a related 
discussion see Cicogna (1990) and Gaeta (1991b). 
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